DROPLET MOTION IN AN INHOMOGENE OUS-
IN-TEMPERATURE VISCOUS MEDIUM
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Theory of heat carrying by spherical fluid particles in viscous liquids is developed. It is
found that the velocity of the particles is directly proportional fo the derivative of surface
tension with respect to temperature.

In [1-4] a theory was developed of the motion of aerosol particles in temperature-inhomogeneous
gases; it was found that the transfer effect of these gases is proportional to the coefficient of thermal slid-
ing of the gas along their surface. It was assumed that the radius R of the particles greatly exceeds the
length of the free path of themolecules. In [1]the case of A/R =0 was analyzed which corresponds to very
large particles.

In later works [2, 4] a generalization was given of this theory to the case of small but finite ratios
A/R. The difference between [2] and [3, 4] lies in that the authors of [3, 4] used an improved formula for
the rate of the thermal sliding of the gas on the surface of aerosol particles; this enables one to bring the
theory closer to the experimental results [5, 6] obtained by using very stringent methods. However, no
solution has been found so far as regards the motion of fluid spherical droplets in inhomogeneous-in-tem-
perature viscous liquid media. The special feature of this problem consists, firstly, in that the motion
of the droplets is due to temperature changes in the surface tension on the boundary of the droplet—sur-
rounding fluid interface, and, secondly, that the droplet viscosity n; is comparable to that of the external
medium which makes us take into account the inside motion of the substance in the droplet.

It is considered that a spherical droplet of fluid of radius R is suspended in a temperature-inhomo-
geneous fluid. The substance of the droplet is different from that of the surrounding fluid. The gravita-
tional forces acting on the droplet will from now on be always ignored. The droplet does not dissolve in
the fluid and across its surface there is no exchange of matter with the surrounding medium., The length
A of the free path of the molecules is considerably shorter than the radius R of a particle; therefore, the
Knudsen number equal to A/R is assumed to be equal to zero. In the mathematical formulation of the prob-
lem, the origin of the spherical coordinate system (r, 6, ¢) is located at the center of the droplet; more-
over, it is assumed that at a great distance from the droplet the temperature gradient (VT), is constant
and directed along the polar axis z =rcosé.

It can be assumed as it was done when solving the Stokes problem [7, 8] that for such a choice of the
origin the droplet is at rest and the center of gravity of the fluid moves with a constant velocity u at great
distances from the droplet.

. The computation of the rate of the carried heat is based on a prior determination of the total force

F acting on the particle. To be able to evaluate the latter the distribution is required of the velocities
v(©) and of the pressure p(®) in the medium around the droplet. The velocity v(€) is due to the temperature
gradient (VTg), and if the parameter R(VTg), /Ty e is small compared to unity then the Reynolds number
is considerably smaller than unity, as was correctly shown in [9]. The latter enables one to use the
linearized Navier—Stokes equations and the continuity equation [9] to solve the problem

770 = yp©, )
divo®@ = 0. (2)
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If the parameter R(VTg)w/ Taye is small then the Péclet number is also small (see [9]); this yields
linearized heat-conduction equations for the temperature T outside the droplet and T; inside it:

viT,=0 for r>R, ®)
vT; =0 for r<CR. (4)
Linearized equations are also valid for the velocities and pressure inside the droplet, namely,

VoD = yp®,

()
div o(® = 0. 6)
For r —« the radial and tangential components of the velocity of the medium assume the form
29 = IZI cos 0,
i for r— oo. (7)~
v§” = —usin6
The temperature Ty for r —« satisfies the relation
T, =T 4 [(¥T.)el r cos®. : . @)

The change in the shape of the fluid droplet is ignored when viscous liquid flows past it since the dis-
tortion of the spherical shape is, as a rule, very slight (see [8]). In such a case the normal velocity com-
ponents of the motion for matter outside or inside the droplet must vanish on its surface: -

02 =0 for r= R,

_ ©)
99 =0 for r=R. (10)
For tangential velocity components one obviously has the relation

U(‘ae),r=_R — vé”b:ze- (11)

Since the boundary of the droplet—outside medium interface is in equilibrium, therefore the com-
ponents of the tensor of total stress must be continuous on this boundary [8, 10]

do dT,
—r 0T, ROB

i avﬁc) s 6082) vg.’) \
e( ) T a7 or T (12)

T e "o T r

) ) 5
_ ( 1 a? N vl o )
r=R ‘

r=. R.

The condition (12) is the condition of equality of the tangential components of the stress tensor. The
boundary condition for the continuity of normal stresses is replaced by the equivalent condition of the
vanishing of the total force F on the droplet in its uniform motion [8].

For A/R —0 for temperatures Te and T; one has the following condition:

T.— Ti)lr=R =0. (13)
Finally, the heat flux across the surface of the droplet is also continuous,
aT, oT,;
Il N P (14)

where ne and % are the heat conductivities of the outside medium and of the droplet, respectively.

Equations (1)~(6) and the boundary conditions (7)-(14) enable us to seek the solutions in the form

B, =~
o = (——‘f; e Iu!) cos 8, (15)
A, B, -\
v§) = (-27?’ — 5 l“]) sin 6, 1s)
B,
P(e) =pi -+ Me —z— 08 8, an
i) = (C; + Dy cos 8, (18)
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o) = —(C, -+ 2D,;r%sin 0, 19)

P = p§® -+ 100,D;r cos 8, {20)

Te=Too+ (VT wr cos 8 + T cos§ -+ T2, 1)
o r

T, = s + ¥4 cos 0. (22)

Substituting the solutions (15)-(22) into the boundary conditions (9)-(14) one obtains a system of algebraic
equations which enable one to determine the values of the constants Ag, Be, Ci, Dj, vy, vz, ¥3 and y,.
However, it is not intended here to find the analytic expressions for all the eight constants since we shall
only require the analytic expression for the constant B,.

The total force exerted on the droplet is equal to the integral over its surface of the components of
the stress tensor [7, 8],

= {{ (p% cos & — pi§ sin B)|,—r dS.

@3)

The integration results in

? = 4m]e§e,
- ’ @4)
where Bg in its vectorial form is given by
do
‘ R ——— (y7)w
B, = 2n+3n) Ru_( % ) ar, @5)
2(n.+my) 2%, +%; (M. +m)

The condition that the total force (24) must vanish indicates automatically that the vector —ﬁe of (25)
also vanishes., From the latter condition an expression is obtained for the velocity u:

2Rx,

U= Ty @, 30y aT VD)= 26)

By changing over to the coordinate system related to the center of gravity of the surrounding medium
one easily obtains from (26) the rate of heat carried by the droplet; this is done by changing the sign of u:

- ) 2%, R

u

do
T @R, ) @n, T 30 (5 ) (v7)e. 7

If the viscosity n; of the droplet matter exceeds considerably that of the surrounding medium ne (in
the limit 7, /‘ﬂe —) the velocity ur approaches zero. The velocity up also approaches zero if %j/1g —~.
that is, for very high thermal conduction of the droplet compared with that of the surrounding medium.
The surface tension o is 2 decreasing function of temperature. Therefore, one has 86/8T <0, and the rate
uT of heat carrying given by {27) is directed towards the temperature growth.

From the formula (27) the cases of motion of gas cavities in fluid are easily obtained. To this end
7; must approach zero. This yields .

- ‘ %R do WT.)
ST TG, Ry, \ 0T, | @8)
The velocity of motion of the cavities exceeds the velocity of the liquid droplets if for both the sur-
rounding medium is the same.
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